Problem

Source: VI All-Ukrainian Tournament of Young Mathematicians, Qualifying p2

Tags: geometry, Equilateral, Ukrainian TYM



Let $A_1,B_1,C_1$ be the midpoints of the sides of the $BC,AC, AB$ of an equilateral triangle $ABC$. Around the triangle $A_1B_1C_1$ is a circle $\gamma$, to which the tangents $B_2C_2$, $A_2C_2$, $A_2B_2$ are drawn, respectively, parallel to the sides $BC, AC, AB$. These tangents have no points in common with the interior of triangle $ABC$. Find out the mutual location of the points of intersection of the lines $AA_2$ and $BB_2$, $AA_2$ and $CC_2$, $BB_2$ and $CC_2$ and the circumscribed circle $\gamma$. Try to consider the case of arbitrary points $A_1,B_1,C_1$ located on the sides of the triangle $ABC$.