A quadrilateral whose perimeter is equal to $P$ is inscribed in a circle of radius $R$ and is circumscribed around a circle of radius $r$. Check whether the inequality $P\le \frac{r+\sqrt{r^2+4R^2}}{2}$ holds. Try to find the corresponding inequalities for the $n$-gon ($n \ge 5$) inscribed in a circle of radius $R$ and circumscribed around a circle of radius $r$.
Problem
Source: VI All-Ukrainian Tournament of Young Mathematicians, Qualifying p14
Tags: geometry, bicentric quadrilateral, geometric inequality, Ukrainian TYM