Problem

Source: 2021 Pan-African Mathematics Olympiad, Problem 5

Tags: algebra, functional equation, function



Find all functions $f$ $:$ $\mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x,y \in \mathbb{R}$ : $$(f(x)+y)(f(y)+x)=f(x^2)+f(y^2)+2f(xy)$$