Problem

Source: Turkey TST 2021 D-3, P-2

Tags: algebra, functional equation, function



Let \(c\) be a real number. For all \(x\) and \(y\) real numbers we have, \[f(x-f(y))=f(x-y)+c(f(x)-f(y))\]and \(f(x)\) is not constant. \(a)\) Find all possible values of \(c\). \(b)\) Can \(f\) be periodic?