Let \(c\) be a real number. For all \(x\) and \(y\) real numbers we have, \[f(x-f(y))=f(x-y)+c(f(x)-f(y))\]and \(f(x)\) is not constant. \(a)\) Find all possible values of \(c\). \(b)\) Can \(f\) be periodic?
Problem
Source: Turkey TST 2021 D-3, P-2
Tags: algebra, functional equation, function
SerdarBozdag
21.05.2021 20:30
\(a)\)\(P(x,x)\) gives \(f(x-f(x))=f(0)\). \(P(0,x-f(x))\) gives \(f(-f(0))=f(f(x)-x)\). \(P(0,0)\) gives \(f(-f(0))=f(0)\). Thus we have \(f(f(x)-x)=f(0)\). Plugging \(x=0\) gives \(f(0)=f(f(0))\). \(P(x,f(0))\) gives \(c(f(x)-f(0))=0\). If there exists \(x\) satisfying \(f(x)\neq f(0)\), we have \(c=0\). Otherwise \(f(x)\) is constant. Therefore \(c=0\).
\(b)\)\(P(x+y,y)\) gives \(f(x+y-f(y))=f(x)\). If \(T\) is the period, we have \(y-f(y)=Tg(y)\) where g is a function from Z to Z. Putting \(f(x)=x-Tg(x)\) in the equation gives \(2y=T(g(y)+g(x+y-g(y)T)-g(x-y))\). Because \(g\) is Z to Z, we have \(2y=h(x,y)T\) where \(h(x,y)=g(y)+g(x+y-g(y)T)-g(x-y)\) is a function from ZxZ to Z. Obviously, this cannot be true for all \(y\). For example, \(0<y<T/2\). Thus \(f\) cannot be periodic.
NOTE: Solution of b is wrong. Because \(2y=T(g(y)+g(x+y-g(y)T)-g(x-y))\) is wrong.
Can anyone check this solution?
SerdarBozdag
21.05.2021 20:41
Not important.
BarisKoyuncu
21.05.2021 23:57
We claim that the only solution is $c=0$.
See that if $c=0$, then $f(x)=x$ works.
Let $c\neq 0$ and let $P(x,y)$ be the assertion.
Lemma: Let $a$ and $b$ be real numbers such that $f(a)=f(b)$. Then $f(x-a)=f(x-b)$ for each real number $x$.
Proof: $P(x,a)$ and $P(x,b)$ directly gives the desired result.
$P(1,1)$ gives $f(1-f(1))=f(0)$. By Lemma we can say that $f(x-1+f(1))=f(x)$.
Replace $x$ with $x-f(1)$. Then $f(x-1)=f(x-f(1))$.
$P(x,1)$ gives $f(x-f(1))=f(x-1)+c(f(x)-f(1))\Rightarrow c(f(x)-f(1))=0$. We assumed $c\neq 0$. Thus, $f(x)=f(1)$ for all real numbers. Thus, $f$ is constant. Contradiction. Hence $c=0$ is the only valid solution.
See that $f(x)=\{x\}$ works when $c=0$. Thus the function can be periodic.
rafaello
22.05.2021 00:43
For part a, we claim that the only possible value of $c$ is $0$, this obviously works.
Let $P(x,y)$ be the assertion.
$P(x,0)$, $P(x,x)$ and $P(x,x-f(x))$ give us $f(f(x))=f(x)$.
Now, $P(x,y)$ and $P(x,f(y))$ imply $f(x-y)=f(x-f(y))$ and therefore $c(f(x)-f(y))=0$ for all $x,y\in\mathbb{R}$. Since $f$ is not a constant function, thus $c=0$.
For part b, one could use $f(x)=x-\lfloor x\rfloor \forall x\in\mathbb{R}$.