Problem

Source: III All-Ukrainian Tournament of Young Mathematicians, Qualifying p11

Tags: geometry, regular polygon, Ukrainian TYM



A circle centered at point $O$ is separated by points $A_1,A_2,...,A_n$ on $n$ equal parts (points are listed sequentially clockwise) and the rays $OA_1,OA_2,...,OA_n$ are constructed. The angle $A_2OA_3$ is divided by rays into two equal angles at vertex $O$, the angle $A_3OA_4$ is divided into three equal angles, and so on, finally, the angle $A_nOA_1$ divided into $n$ equal angles at vertex $O$. A point belonging to the ray other than $OA_1$, is connected by a segment with its orthogonal projection $B_0$ on the neighboring (clockwise) arrow) with ray $OA_1$, point$ B_1$ is connected by a segment with its orthogonal projection on the next (clockwise) ray, etc. As a result of such process it turns out the broken line $B_0B_1B_2B_3...$ infinitely "twists". Consider the question of giving the thus obtained broken numerical value of "length" $L (n)$ and explore the value of $L(n)$ depending on $n$.