The circle $\omega_0$ touches the line at point A. Let $R$ be a given positive number. We consider various circles $\omega$ of radius $R$ that touch a line $\ell$ and have two different points in common with the circle $\omega_0$. Let $D$ be the touchpoint of the circle $\omega_0$ with the line $\ell$, and the points of intersection of the circles $\omega$ and $\omega_0$ are denoted by $B$ and $C$ (Assume that the distance from point $B$ to the line $\ell$ is greater than the distance from point $C$ to this line). Find the locus of the centers of the circumscribed circles of all such triangles $ABD$.
Problem
Source: 2011 XIV All-Ukrainian Tournament of Young Mathematicians, Qualifying p5
Tags: geometry, Locus, Circumcenter, fixed, Ukrainian TYM