Problem

Source: Bulgaria 1992 P4

Tags: number theory, Diophantine equation



Let $p$ be a prime number in the form $p=4k+3$. Prove that if the numbers $x_0,y_0,z_0,t_0$ are solutions of the equation $x^{2p}+y^{2p}+z^{2p}=t^{2p}$, then at least one of them is divisible by $p$. (Plamen Koshlukov)