Through a random point $C_1$ from the edge $DC$ of the regular tetrahedron $ABCD$ is drawn a plane, parallel to the plane $ABC$. The plane constructed intersects the edges $DA$ and $DB$ at the points $A_1,B_1$ respectively. Let the point $H$ is the midpoint of the altitude through the vertex $D$ of the tetrahedron $DA_1B_1C_1$ and $M$ is the center of gravity (barycenter) of the triangle $ABC_1$. Prove that the measure of the angle $HMC$ doesn’t depend on the position of the point $C_1$. (Ivan Tonov)