Problem

Source: Bulgaria NMO 2021 P1

Tags: combinatorics



A city has $4$ horizontal and $n\geq3$ vertical boulevards which intersect at $4n$ crossroads. The crossroads divide every horizontal boulevard into $n-1$ streets and every vertical boulevard into $3$ streets. The mayor of the city decides to close the minimum possible number of crossroads so that the city doesn't have a closed path(this means that starting from any street and going only through open crossroads without turning back you can't return to the same street). $a)$Prove that exactly $n$ crossroads are closed. $b)$Prove that if from any street you can go to any other street and none of the $4$ corner crossroads are closed then exactly $3$ crossroads on the border are closed(A crossroad is on the border if it lies either on the first or fourth horizontal boulevard, or on the first or the n-th vertical boulevard).