Problem

Source: 2014 XVII All-Ukrainian Tournament of Young Mathematicians named after M. Y. Yadrenko, Qualifying p23

Tags: geometry, tangent circles, Ukrainian TYM



The inscribed circle $\omega$ of triangle $ABC$ with center $I$ touches the sides $AB, BC, CA$ at points $C_1, A_1, B_1$. The circle circumsrcibed around $\vartriangle AB_1C_1$ intersects the circumscribed circle of $ABC$ for second time at the point $K$. Let $M$ be the midpoint $BC$, $L$ be the midpoint of $B_1C_1$. The circle circumsrcibed around $\vartriangle KA_1M$ cuts intersects $\omega$ for second time at the point $T$. Prove that the circumscribed circles of triangles $KLT$ and $LIM$ are tangent.