Let $\omega_a, \omega_b, \omega_c$ be the exscribed circles tangent to the sides $a, b, c$ of a triangle $ABC$, respectively, $ I_a, I_b, I_c$ be the centers of these circles, respectively, $T_a, T_b, T_c$ be the points of contact of these circles to the line $BC$, respectively. The lines $T_bI_c$ and $T_cI_b$ intersect at the point $Q$. Prove that the center of the circle inscribed in triangle $ABC$ lies on the line $T_aQ$.
Problem
Source: 2019 XXII All-Ukrainian Tournament of Young Mathematicians named after M. Y. Yadrenko, Qualifying p11
Tags: geometry, incenter, excircles, excircle, Ukrainian TYM