Problem

Source: 2020 XXIII All-Ukrainian Tournament of Young Mathematicians named after M. Y. Yadrenko, Qualifying p13

Tags: geometry, Concyclic, excenter, Ukrainian TYM



In the triangle $ABC$ on the side $BC$, the points$ D$ and $E$ are chosen so that the angle $BAD$ is equal to the angle $EAC$. Let $I$ and $J$ be the centers of the inscribed circles of triangles $ABD$ and $AEC$ respectively, $F$ be the point of intersection of $BI$ and $EJ$, $G$ be the point of intersection of $DI$ and $CJ$. Prove that the points $I, J, F, G$ lie on one circle, the center of which belongs to the line $I_bI_c$, where $I_b$ and $I_c$ are the centers of the exscribed circles of the triangle $ABC$, which touch respectively sides $AC$ and $AB$.