We are given a triangle $ABC$ in a plane $P$. To any line $D$, not parallel to any side of the triangle, we associate the barycenter $G_D$ of the set of intersection points of $D$ with the sides of $\triangle ABC$. The object of this problem is determining the set $\mathfrak F$ of points $G_D$ when $D$ varies. (a) If $D$ goes over all lines parallel to a given line $\delta$, prove that $G_D$ describes a line $\Delta_\delta$. (b) Assume $\triangle ABC$ is equilateral. Prove that all lines $\Delta_\delta$ are tangent to the same circle as $\delta$ varies, and describe the set $\mathfrak F$. (c) If $ABC$ is an arbitrary triangle, prove that one can find a plane $P$ and an equilateral triangle $A'B'C'$ whose orthogonal projection onto $P$ is $\triangle ABC$, and describe the set $\mathfrak F$ in the general case.