Problem

Source: Mongolia MO 2000 Grade 10 P6

Tags: geometry, angle bisector, ratio, cyclic quadrilateral



In a triangle $ABC$, the angle bisector at $A,B,C$ meet the opposite sides at $A_1,B_1,C_1$, respectively. Prove that if the quadrilateral $BA_1B_1C_1$ is cyclic, then $$\frac{AC}{AB+BC}=\frac{AB}{AC+CB}+\frac{BC}{BA+AC}.$$