Problem

Source: Mongolia MO 2000 Grade 10 P4

Tags: functional equation, fe, Functional inequality, algebra



Suppose that a function $f:\mathbb R\to\mathbb R$ satisfies the following conditions: (i) $\left|f(a)-f(b)\right|\le|a-b|$ for all $a,b\in\mathbb R$; (ii) $f(f(f(0)))=0$. Prove that $f(0)=0$.