Problem

Source: ARO 2021 10.8

Tags: geometry



Given is a cyclic pentagon $ABCDE$, inscribed in a circle $k$. The line $CD$ intersects $AB$ and $AE$ in $X$ and $Y$ respectively. Segments $EX$ and $BY$ intersect again at $P$, and they intersect $k$ in $Q$ and $R$, respectively. Point $A'$ is reflection of $A$ across $CD$. The circles $(PQR)$ and $(A'XY)$ intersect at $M$ and $N$. Prove that $CM$ and $DN$ intersect on $(PQR)$.