Problem

Source: All-Russian 2021/11.4

Tags: geometry, angle bisector, circumcircle



In triangle $ABC$ angle bisectors $AA_{1}$ and $CC_{1}$ intersect at $I$. Line through $B$ parallel to $AC$ intersects rays $AA_{1}$ and $CC_{1}$ at points $A_{2}$ and $C_{2}$ respectively. Let $O_{a}$ and $O_{c}$ be the circumcenters of triangles $AC_{1}C_{2}$ and $CA_{1}A_{2}$ respectively. Prove that $\angle{O_{a}BO_{c}} = \angle{AIC} $