Problem

Source: All-Russian 2021/11.2

Tags: algebra, polynomial, function



Let $P(x)$ be a nonzero polynomial of degree $n>1$ with nonnegative coefficients such that function $y=P(x)$ is odd. Is that possible thet for some pairwise distinct points $A_{1}, A_{2}, \dots A_{n}$ on the graph $G: y = P(x)$ the following conditions hold: tangent to $G$ at $A_{1}$ passes through $A_{2}$, tangent to $G$ at $A_{2}$ passes through $A_{3}$, $\dots$, tangent to $G$ at $A_{n}$ passes through $A_{1}$?