Let $k\ge0$ be a given integer. Suppose there exists positive integer $n,d$ and an odd integer $m>1$ with $d\mid m^{2^k}-1$ and $m\mid n^d+1$. Find all possible values of $\frac{m^{2^k}-1}d$.
Source: Mongolia MO 2001 Teachers P3
Tags: number theory
Let $k\ge0$ be a given integer. Suppose there exists positive integer $n,d$ and an odd integer $m>1$ with $d\mid m^{2^k}-1$ and $m\mid n^d+1$. Find all possible values of $\frac{m^{2^k}-1}d$.