Problem

Source: Mongolia MO 2001 Teachers P2

Tags: inequalities, Sequence, algebra



For positive real numbers $b_1,b_2,\ldots,b_n$ define $$a_1=\frac{b_1}{b_1+b_2+\ldots+b_n}\enspace\text{ and }\enspace a_k=\frac{b_1+\ldots+b_k}{b_1+\ldots+b_{k-1}}\text{ for }k>1.$$Prove that $a_1+a_2+\ldots+a_n\le\frac1{a_1}+\frac1{a_2}+\ldots+\frac1{a_n}$