Problem

Source: Mongolia MO 2001 Grade 10 P2

Tags: geometric inequality, Inequality, geometry



In an acute-angled triangle $ABC$, $a,b,c$ are sides, $m_a,m_b,m_c$ the corresponding medians, $R$ the circumradius and $r$ the inradius. Prove the inequality $$\frac{a^2+b^2}{a+b}\cdot\frac{b^2+c^2}{b+c}\cdot\frac{a^2+c^2}{a+c}\ge16R^2r\frac{m_a}a\cdot\frac{m_b}b\cdot\frac{m_c}c.$$