In a triangle $ABC$, let $a,b,c$ be its sides and $m,n,p$ be the corresponding medians. For every $\alpha>0$, let $\lambda(\alpha)$ be the real number such that $$a^\alpha+b^\alpha+c^\alpha=\lambda(\alpha)^\alpha\left(m^\alpha+n^\alpha+p^\alpha\right)^\alpha.$$(a) Compute $\lambda(2)$. (b) Find the limit of $\lambda(\alpha)$ as $\alpha$ approaches $0$. (c) For which triangles $ABC$ is $\lambda(\alpha)$ independent of $\alpha$?