Problem

Source: French MO 2000 Problem

Tags: geometry, Triangle



In this problem we consider so-called cartesian triangles, that is, triangles $ABC$ with integer sides $BC=a,CA=b,AB=c$ and $\angle A=\frac{2\pi}3$. Unless noted otherwise, $\triangle ABC$ is assumed to be cartesian. (a) If $U,V,W$ are the projections of the orthocenter $H$ to $BC,CA,AB$, respectively, specify which of the segments $AU$, $BV$, $CW$, $HA$, $HB$, $HC$, $HU$, $HV$, $HW$, $AW$, $AV$, $BU$, $BW$, $CV$, $CU$ have rational length. (b) If $I$ is the incenter, $J$ the excenter across $A$, and $P,Q$ the intersection points of the two bisectors at $A$ with the line $BC$, specify those of the segments $PB$, $PC$, $QB$, $QC$, $AI$, $AJ$, $AP$, $AQ$ having rational length. (c) Assume that $b$ and $c$ are prime. Prove that exactly one of the numbers $a+b-c$ and $a-b+c$ is a multiple of $3$. (d) Assume that $\frac{a+b-c}{3c}=\frac pq$, where $p$ and $q$ are coprime, and denote by $d$ the $\gcd$ of $p(3p+2q)$ and $q(2p+q)$. Compute $a,b,c$ in terms of $p,q,d$. (e) Prove that if $q$ is not a multiple of $3$, then $d=1$. (f) Deduce a necessary and sufficient condition for a triangle to be cartesian with coprime integer sides, and by geometrical observations derive an analogous characterization of triangles $ABC$ with coprime sides $BC=a$, $CA=b$, $AB=c$ and $\angle A=\frac\pi3$.