Problem

Source: 2021 Francophone MO Seniors p3

Tags: geometry, square, incircle, tangent, Francophone



Let $ABCD$ be a square with incircle $\Gamma$. Let $M$ be the midpoint of the segment $[CD]$. Let $P \neq B$ be a point on the segment $[AB]$. Let $E \neq M$ be the point on $\Gamma$ such that $(DP)$ and $(EM)$ are parallel. The lines $(CP)$ and $(AD)$ meet each other at $F$. Prove that the line $(EF)$ is tangent to $\Gamma$