Problem

Source: Chinese TST 2007 5th quiz P1

Tags: geometry, circumcircle, parallelogram, perpendicular bisector, geometry proposed



Let convex quadrilateral $ ABCD$ be inscribed in a circle centers at $ O.$ The opposite sides $ BA,CD$ meet at $ H$, the diagonals $ AC,BD$ meet at $ G.$ Let $ O_{1},O_{2}$ be the circumcenters of triangles $ AGD,BGC.$ $ O_{1}O_{2}$ intersects $ OG$ at $ N.$ The line $ HG$ cuts the circumcircles of triangles $ AGD,BGC$ at $ P,Q$, respectively. Denote by $ M$ the midpoint of $ PQ.$ Prove that $ NO = NM.$