Problem

Source:

Tags: combinatorics



Nina and Tadashi play the following game. Initially, a triple $(a, b, c)$ of nonnegative integers with $a+b+c=2021$ is written on a blackboard. Nina and Tadashi then take moves in turn, with Nina first. A player making a move chooses a positive integer $k$ and one of the three entries on the board; then the player increases the chosen entry by $k$ and decreases the other two entries by $k$. A player loses if, on their turn, some entry on the board becomes negative. Find the number of initial triples $(a, b, c)$ for which Tadashi has a winning strategy.