Problem

Source: Peru EGMO TST 2020 #4

Tags: arithmetic sequence, function, algebra



The function $f:\mathbb{N}\rightarrow \mathbb{N}$ is peruvian if it satifies the following two properties: $\triangleright f$ is strictly increasing. $\triangleright$ The numbers $a_1,a_2,a_3,\dots$ where $a_1=f(1)$ and $a_{n+1}=f(a_n)$ for every $n\geq 1$, are in arithmetic progression. Determine all peruvian functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that $f(1)=3$.