Problem

Source: Turkey National Mathematical Olympiad 2020 P1

Tags: combinatorics, Turkey, Divisibility



Let $n > 1$ be an integer and $X = \{1, 2, \cdots , n^2 \}$. If there exist $x, y$ such that $x^2\mid y$ in all subsets of $X$ with $k$ elements, find the least possible value of $k$.