Problem

Source: Turkey National Mathematical Olympiad 2020 P2

Tags: geometry



Let $P$ be an interior point of acute triangle $\Delta ABC$, which is different from the orthocenter. Let $D$ and $E$ be the feet of altitudes from $A$ to $BP$ and $CP$, and let $F$ and $G$ be the feet of the altitudes from $P$ to sides $AB$ and $AC$. Denote by $X$ the midpoint of $[AP]$, and let the second intersection of the circumcircles of triangles $\Delta DFX$ and $\Delta EGX$ lie on $BC$. Prove that $AP$ is perpendicular to $BC$ or $\angle PBA = \angle PCA$.