If $x, y, z$ are positive real numbers find the minimum value of $$2\sqrt{(x+y+z) \left( \frac{1}{x}+ \frac{1}{y} + \frac{1}{z} \right)} - \sqrt{ \left( 1+ \frac{x}{y} \right) \left( 1+ \frac{y}{z} \right)}$$
Problem
Source: Turkey National Mathematical Olympiad 2020 P3
Tags: inequalities, inequalities proposed, Turkey
08.03.2021 16:30
Define $a=\frac{x}{y}$ $b=\frac{y}{z}$. After opening the brackets, the statement becomes $2\sqrt{ab+a+b+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}+3}$$-$$\sqrt{ab+a+b+1}$, which can be groupped as $2\sqrt{(ab+a+b+1)+\frac{ab+a+b+1}{ab}+1}$$-$$\sqrt{ab+a+b+1}$ Now, substituting $ab+a+b+1=4m^2$ $(1)$ and $n^2-4m^2-1=\frac{ab+a+b+1}{ab}$ $(2)$, the main part obviously becomes $2(n-m)$. So, it's sufficient to find the minimum value of $2(n-m)$ Dividing $(1)$ to $(2)$, we have $ab=\frac{4m^2}{n^2-4m^2-1}$ $(3)$ Using Cauchy-Schwarz Inequality, we have $(a+1).(b+1)\geq(\sqrt{ab}+1)^2$, which turns into $\sqrt{ab+a+b+1}\geq\sqrt{ab}+1$ . Using $(1)$ and $(3)$, we get $2m\geq\sqrt{\frac{4m^2}{n^2-4m^2-1}}+1$ $\sqrt{n^2-4m^2-1}\geq\frac{2m}{2m-1}=1+\frac{1}{2m-1}$ $n^2-4m^2-1\geq\left(\frac{1}{2m-1}\right)^2$ $n^2\geq4m^2+1+\left(\frac{1}{2m-1}\right)^2=(4m^2-4m+1)+2.(2m-1).(\frac{2m}{2m-1})+\left(\frac{1}{2m-1}\right)^2$ $=((2m-1)+(1+\frac{1}{2m-1}))^2$ $=(2m+\frac{1}{2m-1})^2$ After taking the square roots and substracting $m$, we get $n-m\geq m+\frac{1}{2m-1}$. Multiplying with 2, we have $2(n-m)\geq 2m+\frac{2}{2m-1}$ $=$ $(2m-1)+\frac{2}{2m-1}+1\geq2\sqrt{2}+1$ (Am-Gm) But the part $2(n-m)$ is indeed our original statement. So the conclusion follows (Equality occurs iff $a=b=\sqrt{2}$, which means $(x,y,z)=(2z,z\sqrt{2},z)$
08.03.2021 16:37
Pqrq wrote: Define $a=\frac{x}{y}$ $b=\frac{y}{z}$. After opening the brackets, the statement becomes $2\sqrt{ab+a+b+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}+3}$$-$$\sqrt{ab+a+b+1}$ Now, let $ab=const.$ Thus, our expression increases as a function of $a+b$, which says that it's enough to assume $a=b$.
08.03.2021 16:48
arqady wrote: Pqrq wrote: Define $a=\frac{x}{y}$ $b=\frac{y}{z}$. After opening the brackets, the statement becomes $2\sqrt{ab+a+b+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}+3}$$-$$\sqrt{ab+a+b+1}$ Now, let $ab=const.$ Thus, our expression increases as a function of $a+b$, which says that it's enough to assume $a=b$. I wrote this in the real exam and I wonder how many points I can take sir.
08.03.2021 17:14
electrovector, for $b=a$ we obtain: $$2\sqrt{ab+a+b+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}+3}-\sqrt{ab+a+b+1}=$$$$=\frac{2(a^2+a+1)}{a}-a-1=1+a+\frac{2}{a}\geq1+2\sqrt2.$$
08.03.2021 17:24
arqady wrote: Pqrq wrote: Define $a=\frac{x}{y}$ $b=\frac{y}{z}$. After opening the brackets, the statement becomes $2\sqrt{ab+a+b+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}+3}$$-$$\sqrt{ab+a+b+1}$ Now, let $ab=const.$ Thus, our expression increases as a function of $a+b$, which says that it's enough to assume $a=b$.
?
08.03.2021 17:34
TerenceTao11235, let $a+b=2u$ and $ab=v^2$. Thus, by AM-GM $u^2\geq v^2$ and $$2\sqrt{ab+a+b+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}+3}-\sqrt{(a+1)(b+1)}=$$$$=2\sqrt{2u+\frac{2u}{v^2}+v^2+\frac{1}{v^2}+3}-\sqrt{v^2+2u+1}=f(u).$$Now, $$f'(u)=\frac{2+\frac{2}{v^2}}{\sqrt{2u+\frac{2u}{v^2}+v^2+\frac{1}{v^2}+3}}-\frac{1}{\sqrt{v^2+2u+1}}>0.$$Id est, it's enough to understand, what happens for $u^2=v^2$ or for $a=b$.
08.03.2021 17:35
arqady wrote: electrovector, for $b=a$ we obtain: $$2\sqrt{ab+a+b+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}+3}-\sqrt{ab+a+b+1}=$$$$=\frac{2(a^2+a+1)}{a}-a-1=1+a+\frac{2}{a}\geq1+2\sqrt2.$$ I did the same thing in the exam. All the solution is same however I feel like I didn't express myself clearly in the exam because of saying "take a+b=m and ab=n, write the expression in terms of m and let this be f(m). We can easily see f(m+d)>f(m)."
08.03.2021 23:32
arqady wrote: TerenceTao11235, let $a+b=2u$ and $ab=v^2$. Thus, by AM-GM $u^2\geq v^2$ and $$2\sqrt{ab+a+b+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}+3}-\sqrt{(a+1)(b+1)}=$$$$=2\sqrt{2u+\frac{2u}{v^2}+v^2+\frac{1}{v^2}+3}-\sqrt{v^2+2u+1}=f(u).$$Now, $$f'(u)=\frac{2+\frac{2}{v^2}}{\sqrt{2u+\frac{2u}{v^2}+v^2+\frac{1}{v^2}+3}}-\frac{1}{\sqrt{v^2+2u+1}}>0.$$Id est, it's enough to understand, what happens for $u^2=v^2$ or for $a=b$.
just bash for $u>v$?
08.03.2021 23:55
Yes. We can assume that $v>0$, which gives $u\geq v$.
09.03.2021 05:30
electrovector wrote: If $x, y, z$ are positive real numbers find the minimum value of $$2\sqrt{(x+y+z) \left( \frac{1}{x}+ \frac{1}{y} + \frac{1}{z} \right)} - \sqrt{ \left( 1+ \frac{x}{y} \right) \left( 1+ \frac{y}{z} \right)}$$ $$LHS=2\sqrt{\left(x+y+z \right)\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x} \right)}-\sqrt{\left(1+\frac{x}{y} \right)\left(1+\frac{y}{z} \right)}$$$$LHS \ge 2\left(\sqrt{\left(x+y \right)\left(\frac{1}{y}+\frac{1}{z} \right)}+\sqrt{\frac{z}{x}} \right)-\sqrt{\left(1+\frac{x}{y} \right)\left(1+\frac{y}{z} \right)}=\sqrt{\left(1+\frac{x}{y} \right)\left(1+\frac{y}{z} \right)}+2\sqrt{\frac{z}{x}}$$$$LHS \ge 1+\sqrt{\frac{x}{z}}+2\sqrt{\frac{z}{x}} \ge 1+2\sqrt{2}.$$
09.03.2021 07:17
Let $a,b,c$ are positive real numbers. Prove that $$2\sqrt{(a+b+c) \left( \frac{1}{a}+ \frac{1}{b} + \frac{1}{c} \right)} - \sqrt{ \left( 1+ \frac{a}{b} \right) \left( 1+ \frac{b}{c} \right)} \geq2\sqrt 2+1.$$Equality holds when $a:b:c=2:\sqrt 2:1.$
09.03.2021 14:05
anhduy98 wrote: electrovector wrote: If $x, y, z$ are positive real numbers find the minimum value of $$2\sqrt{(x+y+z) \left( \frac{1}{x}+ \frac{1}{y} + \frac{1}{z} \right)} - \sqrt{ \left( 1+ \frac{x}{y} \right) \left( 1+ \frac{y}{z} \right)}$$ $$LHS=2\sqrt{\left(x+y+z \right)\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x} \right)}-\sqrt{\left(1+\frac{x}{y} \right)\left(1+\frac{y}{z} \right)}$$$$LHS \ge 2\left(\sqrt{\left(x+y \right)\left(\frac{1}{y}+\frac{1}{z} \right)}+\sqrt{\frac{z}{x}} \right)-\sqrt{\left(1+\frac{x}{y} \right)\left(1+\frac{y}{z} \right)}=\sqrt{\left(1+\frac{x}{y} \right)\left(1+\frac{y}{z} \right)}+2\sqrt{\frac{z}{x}}$$$$LHS \ge 1+\sqrt{\frac{x}{z}}+2\sqrt{\frac{z}{x}} \ge 1+2\sqrt{2}.$$ Pretty clean, thanks for the solution!
11.03.2021 18:45
electrovector wrote: If $x, y, z$ are positive real numbers find the minimum value of $$2\sqrt{(x+y+z) \left( \frac{1}{x}+ \frac{1}{y} + \frac{1}{z} \right)} - \sqrt{ \left( 1+ \frac{x}{y} \right) \left( 1+ \frac{y}{z} \right)}$$ Solution of Zhangyanzong: $$2\sqrt{(x+y+z) \left( \frac{1}{x}+ \frac{1}{y} + \frac{1}{z} \right)} - \sqrt{ \left( 1+ \frac{x}{y} \right) \left( 1+ \frac{y}{z} \right)}$$$$=\sqrt{\left( (x+y)+(x+y+2z) \right) \left(\left (\frac{1}{y}+ \frac{1}{z}\right) +\left (\frac{2}{x}+\frac{1}{y}+ \frac{1}{z}\right) \right)} - \sqrt{ \left( 1+ \frac{x}{y} \right) \left( 1+ \frac{y}{z} \right)}$$$$\geq \sqrt{\left( x+2z+y\right) \left(\frac{2}{x}+ \frac{1}{z}+\frac{1}{y}\right)} \geq2\sqrt 2+1$$
12.03.2021 06:59
Let $a, b,c,d$ are positive real numbers. Prove that $$3\sqrt{(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)}-\sqrt{\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)}-\sqrt{\left(1+\frac{c}{d}\right)\left(1+\frac{d}{a}\right)}\geq 8$$(Lijvzhi)
09.09.2021 16:13
Let $a,b,c$ are positive real numbers. Prove that
09.09.2021 17:15
Let $a,b,c$ are positive real numbers. Prove that $$ (a+b+c)(\frac{1}{a}+\frac{1}{b})(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a}) \geq 22+10\sqrt 5$$$$ (a+b+c)(\frac{1}{a}+\frac{1}{b} +\frac{1}{c})(1+\frac{a}{b})(1+\frac{b}{c})>27$$$$ (\frac{b}{a}+\frac{c}{b} +\frac{a}{c})(1+\frac{a}{b})(1+\frac{b}{c}) >9$$
26.10.2021 12:18
sqing wrote: Let $a, b,c,d$ are positive real numbers. Prove that $$3\sqrt{(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)}-\sqrt{\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)}-\sqrt{\left(1+\frac{c}{d}\right)\left(1+\frac{d}{a}\right)}\geq 8$$(Lijvzhi) Same method. $$\sqrt{(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)} \geq \sqrt{(a+b) \left( \frac{1}{b} + \frac{1}{c} \right)}+ \sqrt{(c+d) \left( \frac{1}{a}+\frac{1}{d} \right)}$$Thus we are left with $2\sqrt{(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)}$ which has a minimum value of $8$.
26.10.2021 13:08
03.11.2021 15:50
sqing wrote: Let $a,b,c$ are positive real numbers. Prove that $$3\sqrt{(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}-\sqrt{(1+\frac{a}{b})(1+\frac{b}{c})}\geq 2(\sqrt 6+1)$$$$3\sqrt{(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}-2\sqrt{(1+\frac{a}{b})(1+\frac{b}{c})}\geq 2\sqrt 3+1$$$$4\sqrt{(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}-3\sqrt{(1+\frac{a}{b})(1+\frac{b}{c})}\geq 5$$$$\sqrt{(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}+\sqrt{(1+\frac{a}{b})(1+\frac{b}{c})}\geq 2(\sqrt 2+1)$$$$\sqrt{(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}+3\sqrt{(1+\frac{a}{b})(1+\frac{b}{c})}\geq 8$$ All can be solved by the same method.
03.11.2021 16:12
04.11.2021 01:03
sqing wrote: Could you please write one of the proofs in detail? Thanks. [/hide] Of course. Let's solve the first ineq as I numbered above. There are two main points to see while solving this problem. First one is trying to use Cauchy-Scwarz in an appropriate form to make inequality simpler. This part is obvious because of the fact that we have squareroot of product of sums. The annoying second part in this inequality is the part $\sqrt{\left( 1+ \frac{a}{b} \right) \left( 1+ \frac{b}{c} \right)}$ since it has a minus sign in front of it. Hence we must get rid of this. To make this annoying part look like the normal part we arrange it a little bit and it looks like this $$\sqrt{\left( 1+ \frac{a}{b} \right) \left( 1+ \frac{b}{c} \right)}=\sqrt{(a+b) \left( \frac{1}{b} +\frac{1}{c} \right)}$$That is where the magic happens. We see this is similar to $\sqrt{(a+b+c) \left( \frac{1}{a}+\frac{1}{b}+ \frac{1}{c} \right)}$ and applying C-S to this we will get $$3 \sqrt{(a+b+c) \left( \frac{1}{a}+\frac{1}{b}+ \frac{1}{c} \right)} \geq 3\sqrt{(a+b) \left(\frac{1}{b}+\frac{1}{c} \right)} +3\sqrt{\frac{c}{a} } \Rightarrow 3 \sqrt{(a+b+c) \left( \frac{1}{a}+\frac{1}{b}+ \frac{1}{c} \right)} -\sqrt{\left( 1+\frac{a}{b} \right) \left(1+ \frac{b}{c} \right)} \geq 2\sqrt{(a+b) \left(\frac{1}{b}+\frac{1}{c} \right)} +3\sqrt{\frac{c}{a}}$$With the same motivation we have to get something simpler. This time it is easier to see though. We will cancel $b$ using C-S and use an easy AM-GM which will finish the problem at the end. $$2\sqrt{(b+a) \left(\frac{1}{b}+\frac{1}{c} \right) }+3\sqrt{\frac{c}{a}} \geq 2+ 2\sqrt{\frac{a}{c}}+3\sqrt{\frac{c}{a}} \geq 2+2 \sqrt{6}$$and we are done.
04.11.2021 02:41
26.11.2023 15:15
Generalization 1 Let $x_{1},x_2,\cdots,x_{2k+1}$ be positive reals ($k\geq 1$). Then prove that $$2\sqrt{\left(\sum_{cyc}{x_{1}}\right)\left(\sum_{cyc}{\dfrac{1}{x_{1}}}\right)}-\sqrt{\left(\sum_{i=1}^{n-1}{x_{i}}\right)\left(\sum_{j=2}^{n}{\dfrac{1}{x_{j}}}\right)}\geq 2\sqrt{2}+1+4\left(k-1\right)$$