Problem

Source: CGMO 2005, Problem 6

Tags: analytic geometry, combinatorics unsolved, combinatorics



An integer $ n$ is called good if there are $ n \geq 3$ lattice points $ P_1, P_2, \ldots, P_n$ in the coordinate plane satisfying the following conditions: If line segment $ P_iP_j$ has a rational length, then there is $ P_k$ such that both line segments $ P_iP_k$ and $ P_jP_k$ have irrational lengths; and if line segment $ P_iP_j$ has an irrational length, then there is $ P_k$ such that both line segments $ P_iP_k$ and $ P_jP_k$ have rational lengths. (1) Determine the minimum good number. (2) Determine if 2005 is a good number. (A point in the coordinate plane is a lattice point if both of its coordinate are integers.)