Problem

Source: CGMO 2005, Problem 4

Tags: number theory, least common multiple, ceiling function, combinatorics unsolved, combinatorics



Determine all positive real numbers $ a$ such that there exists a positive integer $ n$ and sets $ A_1, A_2, \ldots, A_n$ satisfying the following conditions: (1) every set $ A_i$ has infinitely many elements; (2) every pair of distinct sets $ A_i$ and $ A_j$ do not share any common element (3) the union of sets $ A_1, A_2, \ldots, A_n$ is the set of all integers; (4) for every set $ A_i,$ the positive difference of any pair of elements in $ A_i$ is at least $ a^i.$