Problem

Source: CGMO 2005, Problem 2

Tags: trigonometry, geometry, trig identities, Law of Sines, algebra unsolved, algebra



Find all ordered triples $ (x, y, z)$ of real numbers such that \[ 5 \left(x + \frac{1}{x} \right) = 12 \left(y + \frac{1}{y} \right) = 13 \left(z + \frac{1}{z} \right),\] and \[ xy + yz + zy = 1.\]