Problem

Source: CGMO 2005, Problem 1

Tags: geometry, circumcircle, perpendicular bisector, geometry unsolved



As shown in the following figure, point $ P$ lies on the circumcicle of triangle $ ABC.$ Lines $ AB$ and $ CP$ meet at $ E,$ and lines $ AC$ and $ BP$ meet at $ F.$ The perpendicular bisector of line segment $ AB$ meets line segment $ AC$ at $ K,$ and the perpendicular bisector of line segment $ AC$ meets line segment $ AB$ at $ J.$ Prove that \[ \left(\frac{CE}{BF} \right)^2 = \frac{AJ \cdot JE}{AK \cdot KF}.\]


Attachments: