Problem

Source: CGMO 2003, Problem 7

Tags: geometry, circumcircle, trigonometry, geometry unsolved



Let the sides of a scalene triangle $ \triangle ABC$ be $ AB = c,$ $ BC = a,$ $ CA =b,$ and $ D, E , F$ be points on $ BC, CA, AB$ such that $ AD, BE, CF$ are angle bisectors of the triangle, respectively. Assume that $ DE = DF.$ Prove that (1) $ \frac{a}{b+c} = \frac{b}{c+a} + \frac{c}{a+b}$ (2) $ \angle BAC > 90^{\circ}.$