Problem

Source: CGMO 2003, Problem 6

Tags: inequalities, inequalities unsolved



Let $ n \geq 2$ be an integer. Find the largest real number $ \lambda$ such that the inequality \[ a^2_n \geq \lambda \sum^{n-1}_{i=1} a_i + 2 \cdot a_n.\] holds for any positive integers $ a_1, a_2, \ldots a_n$ satisfying $ a_1 < a_2 < \ldots < a_n.$