Let $ n \geq 2$ be an integer. Find the largest real number $ \lambda$ such that the inequality \[ a^2_n \geq \lambda \sum^{n-1}_{i=1} a_i + 2 \cdot a_n.\] holds for any positive integers $ a_1, a_2, \ldots a_n$ satisfying $ a_1 < a_2 < \ldots < a_n.$
Now $1\leq a_1<a_2<\cdots <a_n$
So $a_m\leq a_n+(m-n)$ where $1\leq m\leq n$ and $n\leq a_n$
So $\sum^{n-1}_{i=1}a_i\leq (n-1)a_n-\sum^{n-1}_{i=1} i =(n-1)a_n-\frac{n(n-1)}{2}$
So $\frac{2n-4}{n-1}\sum^{n-1}_{i=1}a_i\leq 2(n-2)a_n-n(n-2)=(n-2)(2a_n-n)$
$n\leq a_n$ so $a_n-n+2>a_n-n\geq 0$ so $(a_n-n+2)(a_n-n)\geq 0$
So $a_n^2-2a_n\geq (n-2)(2a_n-n)$
So $a_n^2\geq \frac{2n-4}{n-1}\sum^{n-1}_{i=1}a_i +2a_n$
So $MAX(\lambda)\geq\frac{2n-4}{n-1}$
Consider $a_m=m$ where $1\leq m\leq n$
Then $n(n-2)=n^2-2n\geq \lambda \cdot \frac{n(n-1)}{2}$
Then $\lambda \leq\frac{2n-4}{n-1}$
So $MAX(\lambda)\leq\frac{2n-4}{n-1}$
Hence $\frac{2n-4}{n-1}\leq MAX(\lambda)\leq\frac{2n-4}{n-1}$
Hence $MAX(\lambda)=\frac{2n-4}{n-1}$