Problem

Source: CGMO 2003, Problem 5

Tags: inequalities, function, induction, algebra unsolved, algebra



Let $ \{a_n\}^{\infty}_1$ be a sequence of real numbers such that $ a_1 = 2,$ and \[ a_{n+1} = a^2_n - a_n + 1, \forall n \in \mathbb{N}.\] Prove that \[ 1 - \frac{1}{2003^{2003}} < \sum^{2003}_{i=1} \frac{1}{a_i} < 1.\]