Problem

Source: CGMO 2003, Problem 4

Tags: inequalities unsolved, inequalities



(1) Prove that there exist five nonnegative real numbers $ a, b, c, d$ and $ e$ with their sum equal to 1 such that for any arrangement of these numbers around a circle, there are always two neighboring numbers with their product not less than $ \frac{1}{9}.$ (2) Prove that for any five nonnegative real numbers with their sum equal to 1 , it is always possible to arrange them around a circle such that there are two neighboring numbers with their product not greater than $ \frac{1}{9}.$