As shown in the figure, quadrilateral $ ABCD$ is inscribed in a circle with $ AC$ as its diameter, $ BD \perp AC,$ and $ E$ the intersection of $ AC$ and $ BD.$ Extend line segment $ DA$ and $ BA$ through $ A$ to $ F$ and $ G$ respectively, such that $ DG || BF.$ Extend $ GF$ to $ H$ such that $ CH \perp GH.$ Prove that points $ B, E, F$ and $ H$ lie on one circle. [asy][asy] defaultpen(linewidth(0.8)+fontsize(10));size(150); real a=4, b=6.5, c=9, d=a*c/b, g=14, f=sqrt(a^2+b^2)*sqrt(a^2+d^2)/g; pair E=origin, A=(0,a), B=(-b,0), C=(0,-c), D=(d,0), G=A+g*dir(B--A), F=A+f*dir(D--A), M=midpoint(G--C); path c1=circumcircle(A,B,C), c2=Circle(M, abs(M-G)); pair Hf=F+10*dir(G--F), H=intersectionpoint(F--Hf, c2); dot(A^^B^^C^^D^^E^^F^^G^^H); draw(c1^^c2^^G--D--C--A--G--F--D--B--A^^F--H--C--B--F); draw(H--B^^F--E^^G--C, linetype("2 2")); pair point= E; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$F$", F, dir(point--F)); label("$G$", G, dir(point--G)); label("$H$", H, dir(point--H)); label("$E$", E, NE);[/asy][/asy]
Problem
Source: CGMO 2003, Problem 3
Tags: geometry, parallelogram, circumcircle, trigonometry, perpendicular bisector
31.12.2008 07:03
Circle $ \mathcal C$ with center $ C$ and radius $ CG$ cuts the rays $ AB, AD, AF$ at $ B', D', F'.$ $ B'D'GF'$ is cyclic isosceles trapezoid. Since $ CB \perp B'G$ and $ CD \perp F'D',$ $ B, D$ are midpoints of its diagonals $ B'G, F'D',$ $ BD$ is its midline. It cuts the segment $ D'G$ at its midpoint $ M,$ so that $ DM$ is the D-median of $ \triangle DD'G.$ $ CM$ is perpendicular bisector of the chord $ D'G$ $ \Longrightarrow$ $ M$ is on a circle $ \mathcal K$ with diameter $ CG.$ The angles $ \angle CBG, \angle CHG$ are right $ \Longrightarrow$ $ B, H \in \mathcal K.$ Parallel to $ DA$ through $ B$ cuts $ CG$ at $ P.$ $ BPDF$ is a parallelogram, its diagonals $ BD, PF$ cutting each other in half at $ E,$ so that $ BE$ is the B-median of $ \triangle BPF.$ Triangles $ \triangle BPF \sim \triangle DD'G$ are centrally similar, having parallel 2 pairs of corresponding sides $ BF \parallel DG, BP \parallel DD'$ and corresponding medians $ BE \parallel DM$ $ \Longrightarrow$ $ EF \parallel MG.$ Since quadrilateral $ BMGH$ is cyclic with circumcircle $ \mathcal K,$ quadrilateral $ BEFH$ with equal internal angles is also cyclic.
02.01.2009 16:27
$ BF||DG\rightarrow \frac{AF}{AD}=\frac{BA}{AG}\leftrightarrow AF.AG=AB^2=AE.AC$ $ \rightarrow \frac{AF}{AE}=\frac{AC}{AG}\rightarrow \triangle AFE \sim \triangle ACG$ $ \rightarrow \angle{AFE}=\angle{ACG}$ $ \angle{CHF}=\angle{FDC}=\angle{CBG}=90$ $ CHFD,CBHG$ are cyclic $ \rightarrow \angle{GFE}=\angle{GFD}+\angle{AFE}=\angle{HCD}+\angle{ACG}$ $ =\angle{HCG}+\angle{ACD}=\angle{HBG}+\angle{ABD}=\angle{ABE}$ =>$ HFEB$ is cyclic
19.12.2011 00:28
Let $CH$ meet $BD$ at $I$, and let $CE$ meet $FG$ at $J$. $FHEB$ cyclic is equivalent to $JI || FB$, since $\angle HJI = \angle HEI$, and $\angle BFH = 180^{\circ} - \angle HEI$ if and only if $BFHE$ is cyclic and if and only if $JI || BF$. Since $BF || GD$, to show $IJ || BF$ it suffices to show $\frac{FJ}{JG} = \frac{BI}{ID}$. Since $\angle FHC = \angle FDC = 90^{\circ}$, $FHDC$ is cyclic, and since $\angle GHC = \angle GBC = 90^{\circ}$, $GHBC$ is cyclic. Therefore, $\angle AFG = \angle ICD$ and $\angle AGF = \angle BCI$. In addition, since $CA$ bisects $\angle FAG$, we have $\frac{FA}{AG} = \frac{FJ}{JG}$. Thus, \[ \frac{FJ}{JG} = \frac{FA}{AG} = \frac{\sin \angle AGF}{\sin \angle AFG} = \frac{\sin \angle BCI}{\sin \angle ICD} = \frac{CB \cdot CI \sin \angle BCI}{CD \cdot CI \sin \angle ICD} = \frac{2[BCI]}{2[ICD]} = \frac{BI}{ID}, \] as desired.
21.12.2011 20:35
Good problem , i have same solution as mitdac123
28.12.2011 15:55
$\frac{AF}{AD}=\frac{AB}{AG} \Rightarrow AB^2=AF \cdot AG=AE \cdot AC \Rightarrow \frac{AE}{AF}=\frac{AG}{AC} \Rightarrow \triangle AFE \sim \triangle ACG$, and quad $BHGC$ is cyclic then problem solved, I don't know why in the given figure $BHGC$ is not cyclic...
10.07.2017 16:49
WRONG SOLUTION: We know $BHGC$$(1)$ is cyclic,then $$\angle BHG=90+\angle BHC=^{(1)} 90+\angle BGC=90+\angle AGD=90+(90-\angle DAG)=180-\angle DAG=180-\angle BAF\to \angle BHG+\angle BAF=180,$$then $BHFA$ is cyclic.Also we know $\angle BFA=\angle BEA=90\to BFAE$ is cyclic.Then $BHFAE$ is cyclic.As desired.
11.07.2017 04:39
Ferid.---. wrote: My easy solution: We know $BHGC$$(1)$ is cyclic,then $$\angle BHE=90+\angle BHC=^{(1)} 90+\angle BGC=90+\angle AGD=90+(90-\angle DAG)=180-\angle DAG=180-\angle BAE\to \angle BHE+\angle BAE=180,$$then $BHEA$ is cyclic. How can you tell that $BHEA$ is cyclic? $B , E , F$ and $H$ are to be proved cyclic not $BHEA$.
11.07.2017 15:55
RC. wrote: Ferid.---. wrote: My easy solution: We know $BHGC$$(1)$ is cyclic,then $$\angle BHE=90+\angle BHC=^{(1)} 90+\angle BGC=90+\angle AGD=90+(90-\angle DAG)=180-\angle DAG=180-\angle BAE\to \angle BHE+\angle BAE=180,$$then $BHEA$ is cyclic. How can you tell that $BHEA$ is cyclic? $B , E , F$ and $H$ are to be proved cyclic not $BHEA$. I am sorry,it is my mistake,and I write full and true solution in the last post.
17.07.2017 07:03
Ferid.---. wrote: RC. wrote: Ferid.---. wrote: My easy solution: We know $BHGC$$(1)$ is cyclic,then $$\angle BHE=90+\angle BHC=^{(1)} 90+\angle BGC=90+\angle AGD=90+(90-\angle DAG)=180-\angle DAG=180-\angle BAE\to \angle BHE+\angle BAE=180,$$then $BHEA$ is cyclic. How can you tell that $BHEA$ is cyclic? $B , E , F$ and $H$ are to be proved cyclic not $BHEA$. I am sorry,it is my mistake,and I write full and true solution in the last post. $\angle BGC \not =\angle AGD$ I'm afraid
17.07.2017 11:31
CeuAzul wrote: Ferid.---. wrote: Ferid.---. wrote: My easy solution: We know $BHGC$$(1)$ is cyclic,then $$\angle BHE=90+\angle BHC=^{(1)} 90+\angle BGC=90+\angle AGD=90+(90-\angle DAG)=180-\angle DAG=180-\angle BAE\to \angle BHE+\angle BAE=180,$$then $BHEA$ is cyclic. How can you tell that $BHEA$ is cyclic? $B , E , F$ and $H$ are to be proved cyclic not $BHEA$. I am sorry,it is my mistake,and I write full and true solution in the last post. $\angle BGC \not =\angle AGD$ I'm afraid That's exactly what I was trying to say. I have a simple proof using similarity which I will add tomorrow as it is IMO today.
17.07.2017 11:57
RC. wrote: CeuAzul wrote: Ferid.---. wrote: My easy solution: We know $BHGC$$(1)$ is cyclic,then $$\angle BHE=90+\angle BHC=^{(1)} 90+\angle BGC=90+\angle AGD=90+(90-\angle DAG)=180-\angle DAG=180-\angle BAE\to \angle BHE+\angle BAE=180,$$then $BHEA$ is cyclic. How can you tell that $BHEA$ is cyclic? $B , E , F$ and $H$ are to be proved cyclic not $BHEA$. I am sorry,it is my mistake,and I write full and true solution in the last post. $\angle BGC \not =\angle AGD$ I'm afraid That's exactly what I was trying to say. I have a simple proof using similarity which I will add tomorrow as it is IMO today. I am sorry ,I don't understand the condition of question.I think $G$ lies on $CD.$ Then my solution is wrong.I am sorry.
17.07.2017 17:55
Since, $AC$ is a diameter of \(\odot ABCD\) and \(AC\perp BD\) we know obviously that \(ABCD\) is a kite with \(AB = AD\) and also \(\angle BAC = \angle CAD => \angle EAF = \angle GAC - (1)\) Since, \(DG || BF => \dfrac{AF}{AD}=\dfrac{AB}{AG} => AB\times AD = AF\times AG.\) In right \(\Delta ABC\) \(AB^{2} = AE * AC => AB \times AD = AE \times AC => AF \times AG = AE\times AC =>\dfrac{AF}{AE}=\dfrac{AG}{AD}\) and from [1] \(\angle EAF = \angle GAC => \Delta EAF \sim \Delta GAC => \angle FEA = \angle AGC = \angle BHC.\) \(\angle GHB + \angle FEB = \angle GHC +\angle BEA = 180^{\circ}\)
18.07.2017 00:39
mitdac123 wrote: $ BF||DG\rightarrow \frac{AF}{AD}=\frac{BA}{AG}\leftrightarrow AF.AG=AB^2=AE.AC$ $ \rightarrow \frac{AF}{AE}=\frac{AC}{AG}\rightarrow \triangle AFE \sim \triangle ACG$ $ \rightarrow \angle{AFE}=\angle{ACG}$ $ \angle{CHF}=\angle{FDC}=\angle{CBG}=90$ $ CHFD,CBHG$ are cyclic $ \rightarrow \angle{GFE}=\angle{GFD}+\angle{AFE}=\angle{HCD}+\angle{ACG}$ $ =\angle{HCG}+\angle{ACD}=\angle{HBG}+\angle{ABD}=\angle{ABE}$ =>$ HFEB$ is cyclic How did you get the first line? Where did you get that $AF\cdot AG=AB^2=AE\cdot AC$
20.12.2018 05:46
Since $\angle{FHD}+\angle{FCD}=180$ So $GF.GH=GC.GD=GA.GB$ and $\angle{AFB}+\angle{AEB}=180$ then HFAEB is cyclic