Problem

Source: CGMO 2003, Problem 1

Tags: inequalities, Cauchy Inequality, geometry unsolved, geometry



Let $ ABC$ be a triangle. Points $ D$ and $ E$ are on sides $ AB$ and $ AC,$ respectively, and point $ F$ is on line segment $ DE.$ Let $ \frac {AD}{AB} = x,$ $ \frac {AE}{AC} = y,$ $ \frac {DF}{DE} = z.$ Prove that (1) $ S_{\triangle BDF} = (1 - x)y S_{\triangle ABC}$ and $ S_{\triangle CEF} = x(1 - y) (1 - z)S_{\triangle ABC};$ (2) $ \sqrt [3]{S_{\triangle BDF}} + \sqrt [3]{S_{\triangle CEF}} \leq \sqrt [3]{S_{\triangle ABC}}.$