Problem

Source:

Tags: algebra, polynomial, absolute value, algebra unsolved



Let $ a$, $ b$, $ c$ be integers each with absolute value less than or equal to $ 10$. The cubic polynomial $ f(x) = x^3 + ax^2 + bx + c$ satisfies the property \[ \Big|f\left(2 + \sqrt 3\right)\Big| < 0.0001. \] Determine if $ 2 + \sqrt 3$ is a root of $ f$.