Problem

Source: CGMO 2007 P2

Tags: geometry, circumcircle, ratio, inequalities, geometry proposed



Let $ ABC$ be an acute triangle. Points $ D$, $ E$, and $ F$ lie on segments $ BC$, $ CA$, and $ AB$, respectively, and each of the three segments $ AD$, $ BE$, and $ CF$ contains the circumcenter of $ ABC$. Prove that if any two of the ratios $ \frac{BD}{DC}$, $ \frac{CE}{EA}$, $ \frac{AF}{FB}$, $ \frac{BF}{FA}$, $ \frac{AE}{EC}$, $ \frac{CD}{DB}$ are integers, then triangle $ ABC$ is isosceles.