Problem

Source: Turkey Junior National Olympiad 2020 #P3

Tags: geometry, collinearity



The circumcenter of an acute-triangle $ABC$ with $|AB|<|BC|$ is $O$, $D$ and $E$ are midpoints of $|AB|$ and $|AC|$, respectively. $OE$ intersects $BC$ at $K$, the circumcircle of $OKB$ intersects $OD$ second time at $L$. $F$ is the foot of altitude from $A$ to line $KL$. Show that the point $F$ lies on the line $DE$