Problem

Source: CGMO 2004 P1

Tags: combinatorics unsolved, combinatorics



We say a positive integer $ n$ is good if there exists a permutation $ a_1, a_2, \ldots, a_n$ of $ 1, 2, \ldots, n$ such that $ k + a_k$ is perfect square for all $ 1\le k\le n$. Determine all the good numbers in the set $ \{11, 13, 15, 17, 19\}$.