Assume that $ A_1, A_2, \ldots, A_8$ are eight points taken arbitrarily on a plane. For a directed line $ l$ taken arbitrarily on the plane, assume that projections of $ A_1, A_2, \ldots, A_8$ on the line are $ P_1, P_2, \ldots, P_8$ respectively. If the eight projections are pairwise disjoint, they can be arranged as $ P_{i_1}, P_{i_2}, \ldots, P_{i_8}$ according to the direction of line $ l.$ Thus we get one permutation for $ 1, 2, \ldots, 8,$ namely, $ i_1, i_2, \ldots, i_8.$ In the figure, this permutation is $ 2, 1, 8, 3, 7, 4, 6, 5.$ Assume that after these eight points are projected to every directed line on the plane, we get the number of different permutations as $ N_8 = N(A_1, A_2, \ldots, A_8).$ Find the maximal value of $ N_8.$
Attachments: