Problem

Source: 2021 Taiwan Mathematics Olympiad

Tags: geometry, incenter, geometric transformation, reflection



Let $I$ be the incenter of triangle $ABC$ and let $D$ the foot of altitude from $I$ to $BC$. Suppose the reflection point $D’$ of $D$ with respect to $I$ satisfying $\overline{AD’} = \overline{ID’}$. Let $\Gamma$ be the circle centered at $D’$ that passing through $A$ and $I$, and let $X$, $Y\neq A$ be the intersection of $\Gamma$ and $AB$, $AC$, respectively. Suppose $Z$ is a point on $\Gamma$ so that $AZ$ is perpendicular to $BC$. Prove that $AD$, $D’Z$, $XY$ concurrent at a point.