Problem

Source:

Tags: combinatorics, permutations, Romanian TST, 2017



Let $n$ be a positive integer, and let $S_n$ be the set of all permutations of $1,2,...,n$. let $k$ be a non-negative integer, let $a_{n,k}$ be the number of even permutations $\sigma$ in $S_n$ such that $\sum_{i=1}^{n}|\sigma(i)-i|=2k$ and $b_{n,k}$ be the number of odd permutations $\sigma$ in $S_n$ such that $\sum_{i=1}^{n}|\sigma(i)-i|=2k$. Evaluate $a_{n,k}-b_{n,k}$. * * *