Problem

Source: First Zhautykov Olympiad 2005, Problem 2

Tags: function, algebra unsolved, algebra



Let $ r$ be a real number such that the sequence $ (a_{n})_{n\geq 1}$ of positive real numbers satisfies the equation $ a_{1} + a_{2} + \cdots + a_{m + 1} \leq r a_{m}$ for each positive integer $ m$. Prove that $ r \geq 4$.