Problem

Source: IGMO 2020 Round 2 P3

Tags: number theory, function, floor function



Let's define a function $\phi: \mathbb{N} \to \mathbb{N}$, where $0 \notin \mathbb{N}$, as follows \[ \phi(n) = \sum_{k = 1}^n k! \]Let $\mathbb{V}$ be defined as the set of all triplets $(x,y,z) \in \mathbb{N}$ such that $\phi(x) = y^{z + 1}$. For a triplet $x,y,z$ (denoted by $v$) in $\mathbb{V}$, we define \[ f_v(n) = 8 \left \{ \frac{xy}{8} \right \} \lfloor \sqrt{n} \rfloor + \frac{zn}{z + x - y} \]Show that for any $v \in \mathbb{V}$ and $m \in \mathbb{N}$, the sequence \[ m, f_v(m), f_v(f_v(m)), f_v(f_v(f_v(m))), \dots \]contains at least one square of a natural numbers.