Problem

Source: IGMO 2020 Round 2 P6

Tags: functional equation, algebra, function



Find all functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ such that \[ f(x) + f \left( \frac{1}{x} \right) = 1 \ \text{and} \ f(1 + 2x) = \frac{1}{2} f(x) \]for all $x \in \mathbb{Q}^+$.